Hard-Soft Attention
robot_nav.models.MARL.hardsoftAttention
Attention
Bases: Module
Multi-robot attention mechanism for learning hard and soft attentions.
This module provides both hard (binary) and soft (weighted) attention, combining feature encoding, relative pose and goal geometry, and message passing between agents.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
embedding_dim
|
int
|
Dimension of the agent embedding vector. |
required |
Attributes:
Name | Type | Description |
---|---|---|
embedding1 |
Linear
|
First layer for agent feature encoding. |
embedding2 |
Linear
|
Second layer for agent feature encoding. |
hard_mlp |
Sequential
|
MLP to process concatenated agent and edge features. |
hard_encoding |
Linear
|
Outputs logits for hard (binary) attention. |
q, |
k, v (nn.Linear
|
Layers for query, key, value projections for soft attention. |
attn_score_layer |
Sequential
|
Computes unnormalized attention scores for each pair. |
decode_1, |
decode_2 (nn.Linear
|
Decoding layers to produce the final attended embedding. |
Source code in robot_nav/models/MARL/hardsoftAttention.py
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
|
__init__(embedding_dim)
Initialize attention mechanism for multi-agent communication.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
embedding_dim
|
int
|
Output embedding dimension per agent. |
required |
Source code in robot_nav/models/MARL/hardsoftAttention.py
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
|
encode_agent_features(embed)
Encode agent features using a small MLP.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
embed
|
Tensor
|
Input features (B*N, 5). |
required |
Returns:
Name | Type | Description |
---|---|---|
Tensor |
Encoded embedding (B*N, embedding_dim). |
Source code in robot_nav/models/MARL/hardsoftAttention.py
69 70 71 72 73 74 75 76 77 78 79 80 81 |
|
forward(embedding)
Forward pass: computes both hard and soft attentions among agents, produces the attended embedding for each agent, as well as diagnostic info.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
embedding
|
Tensor
|
Input tensor of shape (B, N, D), where D is at least 11. |
required |
Returns:
Name | Type | Description |
---|---|---|
tuple |
att_embedding (Tensor): Final attended embedding, shape (BN, 2embedding_dim). hard_logits (Tensor): Logits for hard attention, (BN, N-1). unnorm_rel_dist (Tensor): Pairwise distances between agents (not normalized), (BN, N-1, 1). mean_entropy (Tensor): Mean entropy of soft attention distributions. hard_weights (Tensor): Binary hard attention mask, (B, N, N-1). comb_w (Tensor): Final combined attention weights, (N, N*(N-1)). |
Source code in robot_nav/models/MARL/hardsoftAttention.py
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
|