TD3
robot_nav.models.TD3.TD3
Actor
Bases: Module
Actor network for the TD3 algorithm.
This neural network maps states to actions using a feedforward architecture with LeakyReLU activations and a final Tanh output to bound the actions in [-1, 1].
Architecture
Input: state_dim Hidden Layer 1: 400 units, LeakyReLU Hidden Layer 2: 300 units, LeakyReLU Output Layer: action_dim, Tanh
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state_dim
|
int
|
Dimension of the input state. |
required |
action_dim
|
int
|
Dimension of the action output. |
required |
Source code in robot_nav/models/TD3/TD3.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
|
forward(s)
Perform a forward pass through the actor network.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
s
|
Tensor
|
Input state tensor. |
required |
Returns:
Type | Description |
---|---|
torch.Tensor: Action output tensor after Tanh activation. |
Source code in robot_nav/models/TD3/TD3.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
|
Critic
Bases: Module
Critic network for the TD3 algorithm.
This class defines two Q-value estimators (Q1 and Q2) using separate subnetworks. Each Q-network takes both state and action as input and outputs a scalar Q-value.
Architecture for each Q-network
Input: state_dim and action_dim - State pathway: Linear + LeakyReLU → 400 → 300 - Action pathway: Linear → 300 - Combined pathway: LeakyReLU(Linear(state) + Linear(action) + bias) → 1
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state_dim
|
int
|
Dimension of the input state. |
required |
action_dim
|
int
|
Dimension of the input action. |
required |
Source code in robot_nav/models/TD3/TD3.py
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
|
forward(s, a)
Perform a forward pass through both Q-networks.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
s
|
Tensor
|
Input state tensor. |
required |
a
|
Tensor
|
Input action tensor. |
required |
Returns:
Name | Type | Description |
---|---|---|
tuple |
|
Source code in robot_nav/models/TD3/TD3.py
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
|
TD3
Bases: object
Source code in robot_nav/models/TD3/TD3.py
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
|
__init__(state_dim, action_dim, max_action, device, lr=0.0001, save_every=0, load_model=False, save_directory=Path('robot_nav/models/TD3/checkpoint'), model_name='TD3', load_directory=Path('robot_nav/models/TD3/checkpoint'), use_max_bound=False, bound_weight=0.25)
Twin Delayed Deep Deterministic Policy Gradient (TD3) agent.
This class implements the TD3 reinforcement learning algorithm for continuous control. It uses an Actor-Critic architecture with target networks and delayed policy updates.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state_dim
|
int
|
Dimension of the input state. |
required |
action_dim
|
int
|
Dimension of the action space. |
required |
max_action
|
float
|
Maximum allowed value for actions. |
required |
device
|
device
|
Device to run the model on (CPU or CUDA). |
required |
lr
|
float
|
Learning rate for both actor and critic. Default is 1e-4. |
0.0001
|
save_every
|
int
|
Save model every |
0
|
load_model
|
bool
|
Whether to load model from checkpoint. Default is False. |
False
|
save_directory
|
Path
|
Directory to save model checkpoints. |
Path('robot_nav/models/TD3/checkpoint')
|
model_name
|
str
|
Name to use when saving/loading models. |
'TD3'
|
load_directory
|
Path
|
Directory to load model checkpoints from. |
Path('robot_nav/models/TD3/checkpoint')
|
use_max_bound
|
bool
|
Whether to apply maximum Q-value bounding during training. |
False
|
bound_weight
|
float
|
Weight for the max-bound loss penalty. |
0.25
|
Source code in robot_nav/models/TD3/TD3.py
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
|
act(state)
Compute the action using the actor network without exploration noise.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state
|
ndarray
|
The current environment state. |
required |
Returns:
Type | Description |
---|---|
np.ndarray: The deterministic action predicted by the actor. |
Source code in robot_nav/models/TD3/TD3.py
208 209 210 211 212 213 214 215 216 217 218 219 |
|
get_action(obs, add_noise)
Get an action from the current policy with optional exploration noise.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
obs
|
ndarray
|
The current state observation. |
required |
add_noise
|
bool
|
Whether to add exploration noise. |
required |
Returns:
Type | Description |
---|---|
np.ndarray: The chosen action clipped to [-max_action, max_action]. |
Source code in robot_nav/models/TD3/TD3.py
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
|
load(filename, directory)
Load the actor and critic networks (and their targets) from disk.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename
|
str
|
Name used when saving the models. |
required |
directory
|
Path
|
Directory where models are saved. |
required |
Source code in robot_nav/models/TD3/TD3.py
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
|
prepare_state(latest_scan, distance, cos, sin, collision, goal, action)
Prepare the input state vector for training or inference.
Combines processed laser scan data, goal vector, and past action into a normalized state input matching the input dimension.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
latest_scan
|
list or ndarray
|
Laser scan data. |
required |
distance
|
float
|
Distance to goal. |
required |
cos
|
float
|
Cosine of the heading angle to goal. |
required |
sin
|
float
|
Sine of the heading angle to goal. |
required |
collision
|
bool
|
Whether a collision occurred. |
required |
goal
|
bool
|
Whether the goal has been reached. |
required |
action
|
list or ndarray
|
Last executed action [linear_vel, angular_vel]. |
required |
Returns:
Name | Type | Description |
---|---|---|
tuple |
|
Source code in robot_nav/models/TD3/TD3.py
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
|
save(filename, directory)
Save the actor and critic networks (and their targets) to disk.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename
|
str
|
Name to use when saving model files. |
required |
directory
|
Path
|
Directory where models should be saved. |
required |
Source code in robot_nav/models/TD3/TD3.py
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
|
train(replay_buffer, iterations, batch_size, discount=0.99, tau=0.005, policy_noise=0.2, noise_clip=0.5, policy_freq=2, max_lin_vel=0.5, max_ang_vel=1, goal_reward=100, distance_norm=10, time_step=0.3)
Train the TD3 agent using batches sampled from the replay buffer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
replay_buffer
|
The replay buffer to sample experiences from. |
required | |
iterations
|
int
|
Number of training iterations to perform. |
required |
batch_size
|
int
|
Size of each mini-batch. |
required |
discount
|
float
|
Discount factor gamma for future rewards. |
0.99
|
tau
|
float
|
Soft update rate for target networks. |
0.005
|
policy_noise
|
float
|
Stddev of Gaussian noise added to target actions. |
0.2
|
noise_clip
|
float
|
Maximum magnitude of noise added to target actions. |
0.5
|
policy_freq
|
int
|
Frequency of policy (actor) updates. |
2
|
max_lin_vel
|
float
|
Max linear velocity used for upper bound estimation. |
0.5
|
max_ang_vel
|
float
|
Max angular velocity used for upper bound estimation. |
1
|
goal_reward
|
float
|
Reward given for reaching the goal. |
100
|
distance_norm
|
float
|
Distance normalization factor. |
10
|
time_step
|
float
|
Time step used in upper bound calculations. |
0.3
|
Source code in robot_nav/models/TD3/TD3.py
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
|