CNNTD3
robot_nav.models.CNNTD3.CNNTD3
Actor
Bases: Module
Actor network for the CNNTD3 agent.
This network takes as input a state composed of laser scan data, goal position encoding, and previous action. It processes the scan through a 1D CNN stack and embeds the other inputs before merging all features through fully connected layers to output a continuous action vector.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
action_dim
|
int
|
The dimension of the action space. |
required |
Architecture
- 1D CNN layers process the laser scan data.
- Fully connected layers embed the goal vector (cos, sin, distance) and last action.
- Combined features are passed through two fully connected layers with LeakyReLU.
- Final action output is scaled with Tanh to bound the values.
Source code in robot_nav/models/CNNTD3/CNNTD3.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
|
forward(s)
Forward pass through the Actor network.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
s
|
Tensor
|
Input state tensor of shape (batch_size, state_dim). The last 5 elements are [distance, cos, sin, lin_vel, ang_vel]. |
required |
Returns:
Type | Description |
---|---|
torch.Tensor: Action tensor of shape (batch_size, action_dim), with values in range [-1, 1] due to tanh activation. |
Source code in robot_nav/models/CNNTD3/CNNTD3.py
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
|
CNNTD3
Bases: object
CNNTD3 (Twin Delayed Deep Deterministic Policy Gradient with CNN-based inputs) agent for continuous control tasks.
This class encapsulates the full implementation of the TD3 algorithm using neural network architectures for the actor and critic, with optional bounding for critic outputs to regularize learning. The agent is designed to train in environments where sensor observations (e.g., LiDAR) are used for navigation tasks.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state_dim
|
int
|
Dimension of the input state. |
required |
action_dim
|
int
|
Dimension of the output action. |
required |
max_action
|
float
|
Maximum magnitude of the action. |
required |
device
|
device
|
Torch device to use (CPU or GPU). |
required |
lr
|
float
|
Learning rate for both actor and critic optimizers. |
0.0001
|
save_every
|
int
|
Save model every N training iterations (0 to disable). |
0
|
load_model
|
bool
|
Whether to load a pre-trained model at initialization. |
False
|
save_directory
|
Path
|
Path to the directory for saving model checkpoints. |
Path('robot_nav/models/CNNTD3/checkpoint')
|
model_name
|
str
|
Base name for the saved model files. |
'CNNTD3'
|
load_directory
|
Path
|
Path to load model checkpoints from (if |
Path('robot_nav/models/CNNTD3/checkpoint')
|
use_max_bound
|
bool
|
Whether to apply maximum Q-value bounding during training. |
False
|
bound_weight
|
float
|
Weight for the bounding loss term in total loss. |
0.25
|
Source code in robot_nav/models/CNNTD3/CNNTD3.py
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
|
act(state)
Computes the deterministic action from the actor network for a given state.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state
|
ndarray
|
Input state. |
required |
Returns:
Type | Description |
---|---|
np.ndarray: Action predicted by the actor network. |
Source code in robot_nav/models/CNNTD3/CNNTD3.py
264 265 266 267 268 269 270 271 272 273 274 275 276 |
|
get_action(obs, add_noise)
Selects an action for a given observation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
obs
|
ndarray
|
The current observation/state. |
required |
add_noise
|
bool
|
Whether to add exploration noise to the action. |
required |
Returns:
Type | Description |
---|---|
np.ndarray: The selected action. |
Source code in robot_nav/models/CNNTD3/CNNTD3.py
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
|
load(filename, directory)
Loads model parameters from the specified directory.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename
|
str
|
Base filename for saved files. |
required |
directory
|
Path
|
Path to load the model files from. |
required |
Source code in robot_nav/models/CNNTD3/CNNTD3.py
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
|
prepare_state(latest_scan, distance, cos, sin, collision, goal, action)
Prepares the environment's raw sensor data and navigation variables into a format suitable for learning.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
latest_scan
|
list or ndarray
|
Raw scan data (e.g., LiDAR). |
required |
distance
|
float
|
Distance to goal. |
required |
cos
|
float
|
Cosine of heading angle to goal. |
required |
sin
|
float
|
Sine of heading angle to goal. |
required |
collision
|
bool
|
Collision status (True if collided). |
required |
goal
|
bool
|
Goal reached status. |
required |
action
|
list or ndarray
|
Last action taken [lin_vel, ang_vel]. |
required |
Returns:
Name | Type | Description |
---|---|---|
tuple |
|
Source code in robot_nav/models/CNNTD3/CNNTD3.py
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
|
save(filename, directory)
Saves the current model parameters to the specified directory.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename
|
str
|
Base filename for saved files. |
required |
directory
|
Path
|
Path to save the model files. |
required |
Source code in robot_nav/models/CNNTD3/CNNTD3.py
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
|
train(replay_buffer, iterations, batch_size, discount=0.99, tau=0.005, policy_noise=0.2, noise_clip=0.5, policy_freq=2, max_lin_vel=0.5, max_ang_vel=1, goal_reward=100, distance_norm=10, time_step=0.3)
Trains the CNNTD3 agent using sampled batches from the replay buffer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
replay_buffer
|
ReplayBuffer
|
Buffer storing environment transitions. |
required |
iterations
|
int
|
Number of training iterations. |
required |
batch_size
|
int
|
Size of each training batch. |
required |
discount
|
float
|
Discount factor for future rewards. |
0.99
|
tau
|
float
|
Soft update rate for target networks. |
0.005
|
policy_noise
|
float
|
Std. dev. of noise added to target policy. |
0.2
|
noise_clip
|
float
|
Maximum value for target policy noise. |
0.5
|
policy_freq
|
int
|
Frequency of actor and target network updates. |
2
|
max_lin_vel
|
float
|
Maximum linear velocity for bounding calculations. |
0.5
|
max_ang_vel
|
float
|
Maximum angular velocity for bounding calculations. |
1
|
goal_reward
|
float
|
Reward value for reaching the goal. |
100
|
distance_norm
|
float
|
Normalization factor for distance in bounding. |
10
|
time_step
|
float
|
Time delta between steps. |
0.3
|
Source code in robot_nav/models/CNNTD3/CNNTD3.py
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
|
Critic
Bases: Module
Critic network for the CNNTD3 agent.
The Critic estimates Q-values for state-action pairs using two separate sub-networks (Q1 and Q2), as required by the TD3 algorithm. Each sub-network uses a combination of CNN-extracted features, embedded goal and previous action features, and the current action.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
action_dim
|
int
|
The dimension of the action space. |
required |
Architecture
- Shared CNN layers process the laser scan input.
- Goal and previous action are embedded and concatenated.
- Each Q-network uses separate fully connected layers to produce scalar Q-values.
- Both Q-networks receive the full state and current action.
- Outputs two Q-value tensors (Q1, Q2) for TD3-style training and target smoothing.
Source code in robot_nav/models/CNNTD3/CNNTD3.py
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
|
forward(s, action)
Forward pass through both Q-networks of the Critic.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
s
|
Tensor
|
Input state tensor of shape (batch_size, state_dim). The last 5 elements are [distance, cos, sin, lin_vel, ang_vel]. |
required |
action
|
Tensor
|
Current action tensor of shape (batch_size, action_dim). |
required |
Returns:
Name | Type | Description |
---|---|---|
tuple |
|
Source code in robot_nav/models/CNNTD3/CNNTD3.py
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
|