RCPG
robot_nav.models.RCPG.RCPG
Actor
Bases: Module
Actor network that outputs continuous actions for a given state input.
Architecture
- Processes 1D laser scan inputs through 3 convolutional layers.
- Embeds goal and previous action inputs using fully connected layers.
- Combines all features and passes them through an RNN (GRU, LSTM, or RNN).
- Outputs action values via a fully connected feedforward head with Tanh activation.
Parameters
action_dim : int Dimensionality of the action space. rnn : str, optional Type of RNN layer to use ("lstm", "gru", or "rnn").
Source code in robot_nav/models/RCPG/RCPG.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
|
Critic
Bases: Module
Critic network that estimates Q-values for state-action pairs.
Architecture
- Processes the same input as the Actor (laser scan, goal, and previous action).
- Uses two separate Q-networks (double Q-learning) for stability.
- Each Q-network receives both the RNN-processed state and current action.
Parameters
action_dim : int Dimensionality of the action space. rnn : str, optional Type of RNN layer to use ("lstm", "gru", or "rnn").
Source code in robot_nav/models/RCPG/RCPG.py
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
|
RCPG
Bases: object
Recurrent Convolutional Policy Gradient (RCPG) agent for continuous control tasks.
This class implements a recurrent actor-critic architecture using twin Q-networks and soft target updates. It includes model initialization, training, inference, saving/loading, and ROS-based state preparation.
Parameters
state_dim : int Dimensionality of the input state. action_dim : int Dimensionality of the action space. max_action : float Maximum allowable action value. device : torch.device Device to run the model on (e.g., 'cuda' or 'cpu'). lr : float, optional Learning rate for actor and critic optimizers. Default is 1e-4. save_every : int, optional Frequency (in iterations) to save model checkpoints. Default is 0 (disabled). load_model : bool, optional Whether to load pretrained model weights. Default is False. save_directory : Path, optional Directory where models are saved. Default is "robot_nav/models/RCPG/checkpoint". model_name : str, optional Name prefix for model checkpoint files. Default is "RCPG". load_directory : Path, optional Directory to load pretrained models from. Default is "robot_nav/models/RCPG/checkpoint". rnn : str, optional Type of RNN to use in networks ("lstm", "gru", or "rnn"). Default is "gru".
Source code in robot_nav/models/RCPG/RCPG.py
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
|
act(state)
Returns the actor network's raw output for a given input state.
Parameters
state : array_like State input.
Returns
np.ndarray Deterministic action vector from actor network.
Source code in robot_nav/models/RCPG/RCPG.py
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
|
get_action(obs, add_noise)
Computes an action for the given observation, with optional exploration noise.
Parameters
obs : array_like Input observation (state). add_noise : bool If True, adds Gaussian noise for exploration.
Returns
np.ndarray Action vector clipped to [-max_action, max_action].
Source code in robot_nav/models/RCPG/RCPG.py
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
|
load(filename, directory)
Loads model weights for actor and critic networks from disk.
Parameters
filename : str Base name of saved model files. directory : str or Path Directory from which to load model files.
Source code in robot_nav/models/RCPG/RCPG.py
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
|
prepare_state(latest_scan, distance, cos, sin, collision, goal, action)
Converts raw sensor and environment data into a normalized input state vector.
Parameters
latest_scan : list or np.ndarray Laser scan data. distance : float Distance to the goal. cos : float Cosine of the heading angle. sin : float Sine of the heading angle. collision : bool Whether a collision has occurred. goal : bool Whether the goal has been reached. action : list or np.ndarray Previous action taken [linear, angular].
Returns
state : list Normalized input state vector. terminal : int Terminal flag: 1 if goal reached or collision, otherwise 0.
Source code in robot_nav/models/RCPG/RCPG.py
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
|
save(filename, directory)
Saves actor and critic model weights to disk.
Parameters
filename : str Base name for saved model files. directory : str or Path Target directory to save the models.
Source code in robot_nav/models/RCPG/RCPG.py
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
|
train(replay_buffer, iterations, batch_size, discount=0.99, tau=0.005, policy_noise=0.2, noise_clip=0.5, policy_freq=2)
Performs training over a number of iterations using batches from a replay buffer.
Parameters
replay_buffer : object Experience replay buffer with a sample_batch method. iterations : int Number of training iterations. batch_size : int Size of each training batch. discount : float, optional Discount factor for future rewards (γ). Default is 0.99. tau : float, optional Soft update parameter for target networks. Default is 0.005. policy_noise : float, optional Standard deviation of noise added to target actions. Default is 0.2. noise_clip : float, optional Range to clip the noise. Default is 0.5. policy_freq : int, optional Frequency of policy updates relative to critic updates. Default is 2.
Source code in robot_nav/models/RCPG/RCPG.py
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
|