PPO
robot_nav.models.PPO.PPO
ActorCritic
Bases: Module
Actor-Critic neural network model for PPO.
Attributes:
Name | Type | Description |
---|---|---|
actor |
Sequential
|
Policy network (actor) to output action mean. |
critic |
Sequential
|
Value network (critic) to predict state values. |
action_var |
Tensor
|
Diagonal covariance matrix for action distribution. |
device |
str
|
Device used for computation ('cpu' or 'cuda'). |
max_action |
float
|
Clipping range for action values. |
Source code in robot_nav/models/PPO/PPO.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
|
__init__(state_dim, action_dim, action_std_init, max_action, device)
Initialize the Actor and Critic networks.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state_dim
|
int
|
Dimension of the input state. |
required |
action_dim
|
int
|
Dimension of the action space. |
required |
action_std_init
|
float
|
Initial standard deviation of the action distribution. |
required |
max_action
|
float
|
Maximum value allowed for an action (clipping range). |
required |
device
|
str
|
Device to run the model on. |
required |
Source code in robot_nav/models/PPO/PPO.py
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
|
act(state, sample)
Compute an action, its log probability, and the state value.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state
|
Tensor
|
Input state tensor. |
required |
sample
|
bool
|
Whether to sample from the action distribution or use mean. |
required |
Returns:
Type | Description |
---|---|
Tuple[Tensor, Tensor, Tensor]: Sampled (or mean) action, log probability, and state value. |
Source code in robot_nav/models/PPO/PPO.py
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
|
evaluate(state, action)
Evaluate action log probabilities, entropy, and state values for given states and actions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state
|
Tensor
|
Batch of states. |
required |
action
|
Tensor
|
Batch of actions. |
required |
Returns:
Type | Description |
---|---|
Tuple[Tensor, Tensor, Tensor]: Action log probabilities, state values, and distribution entropy. |
Source code in robot_nav/models/PPO/PPO.py
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
|
forward()
Forward method is not implemented, as it's unused directly.
Raises:
Type | Description |
---|---|
NotImplementedError
|
Always raised when called. |
Source code in robot_nav/models/PPO/PPO.py
122 123 124 125 126 127 128 129 |
|
set_action_std(new_action_std)
Set a new standard deviation for the action distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
new_action_std
|
float
|
New standard deviation. |
required |
Source code in robot_nav/models/PPO/PPO.py
111 112 113 114 115 116 117 118 119 120 |
|
PPO
Proximal Policy Optimization (PPO) implementation for continuous control tasks.
Attributes:
Name | Type | Description |
---|---|---|
max_action |
float
|
Maximum action value. |
action_std |
float
|
Standard deviation of the action distribution. |
action_std_decay_rate |
float
|
Rate at which to decay action standard deviation. |
min_action_std |
float
|
Minimum allowed action standard deviation. |
state_dim |
int
|
Dimension of the state space. |
gamma |
float
|
Discount factor for future rewards. |
eps_clip |
float
|
Clipping range for policy updates. |
device |
str
|
Device for model computation ('cpu' or 'cuda'). |
save_every |
int
|
Interval (in iterations) for saving model checkpoints. |
model_name |
str
|
Name used when saving/loading model. |
save_directory |
Path
|
Directory to save model checkpoints. |
iter_count |
int
|
Number of training iterations completed. |
buffer |
RolloutBuffer
|
Buffer to store trajectories. |
policy |
ActorCritic
|
Current actor-critic network. |
optimizer |
Optimizer
|
Optimizer for actor and critic. |
policy_old |
ActorCritic
|
Old actor-critic network for computing PPO updates. |
MseLoss |
Module
|
Mean squared error loss function. |
writer |
SummaryWriter
|
TensorBoard summary writer. |
Source code in robot_nav/models/PPO/PPO.py
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
|
decay_action_std(action_std_decay_rate, min_action_std)
Decay the action standard deviation by a fixed rate, down to a minimum threshold.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
action_std_decay_rate
|
float
|
Amount to reduce standard deviation by. |
required |
min_action_std
|
float
|
Minimum value for standard deviation. |
required |
Source code in robot_nav/models/PPO/PPO.py
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
|
get_action(state, add_noise)
Sample an action using the current policy (optionally with noise), and store in buffer if noise is added.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state
|
array_like
|
Input state for the policy. |
required |
add_noise
|
bool
|
Whether to sample from the distribution (True) or use the deterministic mean (False). |
required |
Returns:
Type | Description |
---|---|
np.ndarray: Sampled action. |
Source code in robot_nav/models/PPO/PPO.py
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
|
load(filename, directory)
Load the policy model from a saved checkpoint.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename
|
str
|
Base name of the model file. |
required |
directory
|
Path
|
Directory to load the model from. |
required |
Source code in robot_nav/models/PPO/PPO.py
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
|
prepare_state(latest_scan, distance, cos, sin, collision, goal, action)
Convert raw sensor and navigation data into a normalized state vector for the policy.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
latest_scan
|
list[float]
|
LIDAR scan data. |
required |
distance
|
float
|
Distance to the goal. |
required |
cos
|
float
|
Cosine of angle to the goal. |
required |
sin
|
float
|
Sine of angle to the goal. |
required |
collision
|
bool
|
Whether the robot has collided. |
required |
goal
|
bool
|
Whether the robot has reached the goal. |
required |
action
|
tuple[float, float]
|
Last action taken (linear and angular velocities). |
required |
Returns:
Type | Description |
---|---|
tuple[list[float], int]: Processed state vector and terminal flag (1 if terminal, else 0). |
Source code in robot_nav/models/PPO/PPO.py
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
|
save(filename, directory)
Save the current policy model to the specified directory.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename
|
str
|
Base name of the model file. |
required |
directory
|
Path
|
Directory to save the model to. |
required |
Source code in robot_nav/models/PPO/PPO.py
468 469 470 471 472 473 474 475 476 477 478 479 |
|
set_action_std(new_action_std)
Set a new standard deviation for the action distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
new_action_std
|
float
|
New standard deviation value. |
required |
Source code in robot_nav/models/PPO/PPO.py
264 265 266 267 268 269 270 271 272 273 |
|
train(replay_buffer, iterations, batch_size)
Train the policy and value function using PPO loss based on the stored rollout buffer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
replay_buffer
|
Placeholder for compatibility (not used). |
required | |
iterations
|
int
|
Number of epochs to optimize the policy per update. |
required |
batch_size
|
int
|
Batch size (not used; training uses the whole buffer). |
required |
Source code in robot_nav/models/PPO/PPO.py
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
|
RolloutBuffer
Buffer to store rollout data (transitions) for PPO training.
Attributes:
Name | Type | Description |
---|---|---|
actions |
list
|
Actions taken by the agent. |
states |
list
|
States observed by the agent. |
logprobs |
list
|
Log probabilities of the actions. |
rewards |
list
|
Rewards received from the environment. |
state_values |
list
|
Value estimates for the states. |
is_terminals |
list
|
Flags indicating episode termination. |
Source code in robot_nav/models/PPO/PPO.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
|
__init__()
Initialize empty lists to store buffer elements.
Source code in robot_nav/models/PPO/PPO.py
23 24 25 26 27 28 29 30 31 32 |
|
add(state, action, reward, terminal, next_state)
Add a transition to the buffer. (Partial implementation.)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state
|
The current observed state. |
required | |
action
|
The action taken. |
required | |
reward
|
The reward received after taking the action. |
required | |
terminal
|
bool
|
Whether the episode terminated. |
required |
next_state
|
The resulting state after taking the action. |
required |
Source code in robot_nav/models/PPO/PPO.py
45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
|
clear()
Clear all stored data from the buffer.
Source code in robot_nav/models/PPO/PPO.py
34 35 36 37 38 39 40 41 42 43 |
|