DDPG
robot_nav.models.DDPG.DDPG
Actor
Bases: Module
Actor network for the DDPG algorithm.
This network maps input states to actions using a fully connected feedforward architecture. It uses Leaky ReLU activations in the hidden layers and a tanh activation at the output to ensure the output actions are in the range [-1, 1].
Architecture
- Linear(state_dim → 400) + LeakyReLU
- Linear(400 → 300) + LeakyReLU
- Linear(300 → action_dim) + Tanh
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state_dim
|
int
|
Dimension of the input state. |
required |
action_dim
|
int
|
Dimension of the output action space. |
required |
Source code in robot_nav/models/DDPG/DDPG.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
|
forward(s)
Forward pass of the actor network.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
s
|
Tensor
|
Input state tensor of shape (batch_size, state_dim). |
required |
Returns:
Type | Description |
---|---|
torch.Tensor: Output action tensor of shape (batch_size, action_dim), scaled to [-1, 1]. |
Source code in robot_nav/models/DDPG/DDPG.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
|
Critic
Bases: Module
Critic network for the DDPG algorithm.
This network evaluates the Q-value of a given state-action pair. It separately processes state and action inputs through linear layers, combines them, and passes the result through another linear layer to predict a scalar Q-value.
Architecture
- Linear(state_dim → 400) + LeakyReLU
- Linear(400 → 300) [state branch]
- Linear(action_dim → 300) [action branch]
- Combine both branches, apply LeakyReLU
- Linear(300 → 1) for Q-value output
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state_dim
|
int
|
Dimension of the input state. |
required |
action_dim
|
int
|
Dimension of the input action. |
required |
Source code in robot_nav/models/DDPG/DDPG.py
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
|
forward(s, a)
Forward pass of the critic network.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
s
|
Tensor
|
State tensor of shape (batch_size, state_dim). |
required |
a
|
Tensor
|
Action tensor of shape (batch_size, action_dim). |
required |
Returns:
Type | Description |
---|---|
torch.Tensor: Q-value tensor of shape (batch_size, 1). |
Source code in robot_nav/models/DDPG/DDPG.py
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
|
DDPG
Bases: object
Deep Deterministic Policy Gradient (DDPG) agent implementation.
This class encapsulates the actor-critic learning framework using DDPG, which is suitable for continuous action spaces. It supports training, action selection, model saving/loading, and state preparation for a reinforcement learning agent, specifically designed for robot navigation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state_dim
|
int
|
Dimension of the input state. |
required |
action_dim
|
int
|
Dimension of the action space. |
required |
max_action
|
float
|
Maximum action value allowed. |
required |
device
|
device
|
Computation device (CPU or GPU). |
required |
lr
|
float
|
Learning rate for the optimizers. Default is 1e-4. |
0.0001
|
save_every
|
int
|
Frequency of saving the model in training iterations. 0 means no saving. Default is 0. |
0
|
load_model
|
bool
|
Flag indicating whether to load a model from disk. Default is False. |
False
|
save_directory
|
Path
|
Directory to save the model checkpoints. Default is "robot_nav/models/DDPG/checkpoint". |
Path('robot_nav/models/DDPG/checkpoint')
|
model_name
|
str
|
Name used for saving and TensorBoard logging. Default is "DDPG". |
'DDPG'
|
load_directory
|
Path
|
Directory to load model checkpoints from. Default is "robot_nav/models/DDPG/checkpoint". |
Path('robot_nav/models/DDPG/checkpoint')
|
use_max_bound
|
bool
|
Whether to enforce a learned upper bound on the Q-value. Default is False. |
False
|
bound_weight
|
float
|
Weight of the upper bound loss penalty. Default is 0.25. |
0.25
|
Source code in robot_nav/models/DDPG/DDPG.py
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
|
act(state)
Computes the action for a given state using the actor network.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state
|
array
|
Environment state. |
required |
Returns:
Type | Description |
---|---|
np.array: Action values as output by the actor network. |
Source code in robot_nav/models/DDPG/DDPG.py
194 195 196 197 198 199 200 201 202 203 204 205 |
|
get_action(obs, add_noise)
Selects an action based on the observation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
obs
|
array
|
The current state observation. |
required |
add_noise
|
bool
|
Whether to add exploration noise to the action. |
required |
Returns:
Type | Description |
---|---|
np.array: Action selected by the actor network. |
Source code in robot_nav/models/DDPG/DDPG.py
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
|
load(filename, directory)
Loads model parameters from disk.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename
|
str
|
Base filename used for loading model components. |
required |
directory
|
str or Path
|
Directory to load the model files from. |
required |
Source code in robot_nav/models/DDPG/DDPG.py
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
|
prepare_state(latest_scan, distance, cos, sin, collision, goal, action)
Processes raw sensor input and additional information into a normalized state representation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
latest_scan
|
list or array
|
Raw LIDAR or laser scan data. |
required |
distance
|
float
|
Distance to the goal. |
required |
cos
|
float
|
Cosine of the angle to the goal. |
required |
sin
|
float
|
Sine of the angle to the goal. |
required |
collision
|
bool
|
Whether a collision has occurred. |
required |
goal
|
bool
|
Whether the goal has been reached. |
required |
action
|
list or array
|
The action taken in the previous step. |
required |
Returns:
Name | Type | Description |
---|---|---|
return |
tuple
|
(state vector, terminal flag) |
Source code in robot_nav/models/DDPG/DDPG.py
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
|
save(filename, directory)
Saves the model parameters to disk.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename
|
str
|
Base filename for saving the model components. |
required |
directory
|
str or Path
|
Directory where the model files will be saved. |
required |
Source code in robot_nav/models/DDPG/DDPG.py
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
|
train(replay_buffer, iterations, batch_size, discount=0.99, tau=0.005, policy_noise=0.2, noise_clip=0.5, policy_freq=2, max_lin_vel=0.5, max_ang_vel=1, goal_reward=100, distance_norm=10, time_step=0.3)
Trains the actor and critic networks using a replay buffer and soft target updates.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
replay_buffer
|
object
|
Replay buffer object with a sample_batch method. |
required |
iterations
|
int
|
Number of training iterations. |
required |
batch_size
|
int
|
Size of each training batch. |
required |
discount
|
float
|
Discount factor for future rewards. |
0.99
|
tau
|
float
|
Soft update factor for target networks. |
0.005
|
policy_noise
|
float
|
Standard deviation of noise added to target policy. |
0.2
|
noise_clip
|
float
|
Maximum value to clip target policy noise. |
0.5
|
policy_freq
|
int
|
Frequency of actor and target updates. |
2
|
max_lin_vel
|
float
|
Maximum linear velocity, used in Q-bound calculation. |
0.5
|
max_ang_vel
|
float
|
Maximum angular velocity, used in Q-bound calculation. |
1
|
goal_reward
|
float
|
Reward given upon reaching goal. |
100
|
distance_norm
|
float
|
Distance normalization factor. |
10
|
time_step
|
float
|
Time step used in max bound calculation. |
0.3
|
Source code in robot_nav/models/DDPG/DDPG.py
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
|